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Users Manual for the UEDGE Edge-Plasma Transport Code

T.D. Rognlien, M.E. Rensink, and G.R. Smith

Lawrence Livermore National Laboratory

Livermore, CA 94551

Operational details are given for the two-dimensional UEDGE edge-plasma transport code. The

model applies to nearly fully-ionized plasmas in a strong magnetic �eld. Equations are solved for

the plasma density, velocity along the magnetic �eld, electron temperature, ion temperature, and

electrostatic potential. In addition, 
uid models of neutrals species are included or the option

to couple to a Monte Carlo code description of the neutrals. Multi-species ion mixtures can be

simulated. The physical equations are discretized by a �nite-di�erence procedure, and the resulting

system of algebraic equations are solved by fully-implicit techniques. The code can be used to follow

time-dependent solutions or to �nd steady-state solutions by direct iteration.
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1. INTRODUCTION

This report gives the operational details of how to use the UEDGE code. A brief description

of the equations solved is included in the Appendix; for more details, the reader can refer to the

reference list at the end of this report which include more information on the models and examples

of the results obtained with the code.

UEDGE is a two-dimensional (2D) 
uid transport code for collisional edge plasmas. Its primary

use has been for tokamak edge plasmas in Magnetic Fusion Energy devices, mainly tokamaks,

although linear devices and spheromaks have also been modeled. UEDGE typically generates a

curvilinear mesh based on the poloidal 
ux surfaces from an MHD equilibrium code such as EFIT

or TEQ, but there are options for Cartesian meshes and cylindrical meshes as well.

The basic physics equations are taken from Braginskii [1], with the addition of ad hoc anomalous

or turbulence-enhanced transport coe�cients for the direction across the magnetic �eld; transport

along the magnetic �eld is taken as classical with 
ux limits. A discussion of the rationale for this

procedure is given in Ref. [2]. Also, an arbitrary number of ion species can be included (limited

by computer memory and speed) which goes beyond Braginskii's model. Line-radiation loss from

excitation, ionization, and recombination is incorporated into the electron energy equation. Neutral

gas is described by 
uid models or by coupling to a Monte Carlo code.

At its inception in 1992, UEDGE used a set of basic physics equations and �nite-di�erencing

similar to that in the original B2 transport code [3,4]. However, UEDGE uses a fully implicit

procedure known as a modi�ed Newton iteration to solve all of the equations simultaneously rather

the the semi-implicit SIMPLE algorithm used in B2. Overviews of the fully-implicit method used

in UEDGE are given in Refs. [5,6]. In addition, UEDGE, now includes a detailed 
uid neutral model

with a parallel momentum equation, calculation of the electrostatic potential with E�B and rB

drift e�ects, and a nonorthogonal mesh to conform to shaped divertor surfaces.

References 7{25 give many details of the models used in UEDGE and some applications for

edge-plasmas in fusion devices. The list is not intended to be exhaustive, but to serve as beginning

bibliography for those seeking more detail.
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2. Source Code, Variable Descriptor Files, and Building an Executable

2.1. Source code

The source code is maintained in a CVS archive on the MFE Program network at LLNL.

Precompilation processing can be done on any workstation that can access to this network, and

others can obtain the necessary �les by contacting the authors. Compilation and loading is done

on the machine where UEDGE is to be run. Details of this procedure are given below in Sec. 2.3.

UEDGE is divided into ten BASIS packages with di�erent functions. For example, the �nite-

di�erenced physics equations are contained in the package bbb, the grid generation routines are in

packages 
x and grd, and the (pfb) package (provided by BASIS) allows reading and writing data

in a portable format PFB save �le. An alphabetical list and summary of all of the packages (each

having its own directory) and several important auxiliary directories is as follows:

aph # calculates atomic cross-sections for hydrogen

api # calculates atomic cross-sections for impurities

bbb # sets up the �nite-di�erence physics equations and routines

# needed by the linear algebra solvers - the heart of UEDGE

com # contains routines and variables needed by various packages

dce # distributed computing package - not generally needed

doc # documentation including UEDGE manual, uedge.man


x # calculates the magnetic 
ux surfaces for mesh

grd # calculates second mesh coordinate and constructs the mesh

in # various diagnostic routines (not a package)

scripts # BASIS scripts for �nding �les (not a package)

svr # linear algebra and temporal integration routines

test # a few test cases (not a package)

wdf # calculates data needed by the DEGAS2 neutral M.C. code
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2.2. Variables

All of the variables within UEDGE, together with a one-line description of their meaning, are

listed in �les called the variable descriptor �les which are used in conjunction with the BASIS

code-development system. Generally, there is one such �le for each package listed above, with the

name of the �le being package name.v in the directory package name. For example, variables for the

physics equations and routines for the numerical Jacobian in UEDGE are included in the variable

descriptor �le called bbb.v in directory bbb. The variables are combined into groups to make the

process of identi�cation easier. Also, if you know the name of the variable while running UEDGE,

at the UEDGE> prompt, you may type list xyz, and you will receive the information about that

variable included in the variable descriptor �le. Also, if you know the name of the group, you can

type list groupname, and receive a listing of that group from the variable descriptor �le.

The primary plasma 
uid variables used in the code are as follows:

ni(0:nx+1,0:ny+1,n
d) Ion dens. [m**(-3)], n
d=species index (default=1)

up(0:nx+1,0:ny+1,n
d) Parallel ion 
ow velocity [m/s]

te(0:nx+1,0:ny+1) Electron temperature [Joules]

ti(0:nx+1,0:ny+1) Ion temperature [Joules]

ng(0:nx+1,0:ny+1,ngsp) Neutral gas density [m**(-3)], ngsp=species index

phi(0:nx+1,0:ny+1) Electrostatic potential [Volts]

Note that SI units are used throughoutUEDGE. The �rst two indices for each variable correspond

to mesh indices (ix,iy), where ix is the poloidal index beginning at the inner divertor plate for a

tokamak, and iy is the radial-like index beginning at the core boundary or the private-
ux-region

wall.

The primary plasma 
uid variables are used to evaluate the spatial derivatives and source terms

in the PDE's. However, the variables that are passed to the ODE and Newton solvers are somewhat

di�erent and normalized. These are as follows:

For density: ni(i)/n0(i), where n0(i) is an input constant

For velocity: ni(i)*up(i)/[n0(i)*cs], where cs is a constant ion-acoustic speed

For Te: ne*te/(n0(1)*tnorm), where tnorm is a constant, ne = elec. dens.
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For Ti: ne*ti/(n0(1)*tnorm), where tnorm is a constant, ne = elec. dens.

For ng: ng(i)/n0g(i)

For phi: ev*phi/tnorm, where ev=1.6e-19 is the electron charge

The conversion from plasma variables to ODE variables is done in subroutine convrs; the reverse

conversion is done by subroutine convert.

The ODE variables are stored in a 1-D vector call yl, starting at ix=0, iy=0. The variables at

that point are stored in the order listed above, then the poloidal index, ix, is incremented until the

ix=nx+1 boundary is reach, then iy is incremented by unity, and the process repeated. There are

index arrays that allow the user to determine the index ieq of yl(ieq) that corresponds to a variable

at a given (ix,iy) location on the grid; these arrays are de�ned as follows:

idxn(ix,iy,i
d): yl ieq index for ni(i)/n0(i)

idxu(ix,iy,i
d): yl ieq index for ni(i)*up(i)/[n0(i)*cs]

idxte(ix,iy): yl ieq index for ne*te/[n0(1)*tnorm]

idxti(ix,iy): yl ieq index for ne*ti/[n0(1)*tnorm]

idxg(ix,iy,igsp): yl ieq index for ng(i)/n0g(i)

idxphi(ix,iy): yl ieq index for ev*phi/tnorm

There are also two arrays that the give the ix and iy indices for a given yl index ieq:

igyl(ieq,1): ix poloidal index for ODE variable ieq

igyl(ieq,2): iy radial index for ODE variable ieq

2.3. Compiling and loading a new executable

The procedure for compiling and building the UEDGE code is outlined below:

Begin in your home directory, and un-tar the �les containing UEDGE by the command

tar xvf uedgeXXXXXX.tar

where XXXXXX will be the date the tar �le was generated; for example, uedge092399.tar.
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Set the following environmental variables; note that BASIS ROOT and NCAR G ROOT will

depend on where the system administrator has stored BASIS and NCAR graphics 0n your computer

system

setenv UEDGE SCRIPTS �/uedge/scripts

setenv BASIS ROOT /usr/local/nbasis

setenv NCARG ROOT /usr/local

setenv OPT '-native -03'

set path = ($BASIS ROOT/bin $path)

Next, go to the �/uedge directory and issue the following to generate the required make �les

mmm -ezn -rl

where ezn is the graphics package and rl is the readline library that allows line editing and line

recall. This command generates the make�les needed to compile and load UEDGE.

Finally, type the following line to compile and load the executable code xuedge

gmake all xuedge

The excecutable xuedge will appear in your uedge/SOL directory if you are on a SUN system.

3. Basic Mechanics of Code Execution

3.1. Reading input and execution

The executable for UEDGE is typically called xuedge, or sometimes just uedge on NERSC

machines. The build and loading procedure is described in Sec. 2.3, which results in the executable

being found in �developer/uedge/SOL, where developer is the name of the person who created the

executable and SOL refers to the SUN Solaris system. On other workstations, SOL will be replaced

by something like HP700 for HPs or AXP for DECs, etc.

Before running UEDGE or xuedge, you need to set two environmental variables if you have

not already done so for the compilation and loading of UEDGE described in Sec. 2.3. If you are
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running on the LLNL MFE SUN solaris system, you can just set two environmental variables:

UEDGE SCRIPTS to /home/rognlien/uedge/scripts and UEDGE to /home/rognlien/uedge. Then you

need not worry about the aphdir and uedge path �les. If you are on another system, or want to read

your own atomic physics and script �les, place the contents of uedge/in/aph and uedge/in/api in

some directory, and then set the environmental variable UEDGE to point to them. Likewise, copy

and then change what is in uedge/scripts and set up the environmental variable UEDGE SCRIPTS

to point to that directory.

The aphdir �le tell UEDGE where to locate the hydrogen atomic rate �les, and on the LLNL

MFE SUN solaris system, it should contain the line

aphdir = \/mfe/theory/Uedge/Ver XX/uedge/in/aph"

where the XX is the most current version number shown in the Uedge directory. The second �le,

uedge path, tells UEDGE where to �nd various diagnostic �les. Again, on the LLNL MFE SUN

solaris system, it should contain the line

call pathadd(\/mfe/theory/Uedge/Ver XX/uedge/in")

One can add other lines to tell UEDGE to search other paths (directories) in response to a command

issued from the parser.

To run a case, simply type xuedge (or uedge if you are using the public version on the NERSC

system). The executable will then automatically read a default input �le called .basis, if it exists

in the directory (generally not used, however). After UEDGE has read the .basis �le, it comes back

with the prompt UEDGE>, at which point you need to type a command. Typically, you will read a

second �le which contains the input settings for various control variables and switches; we usually

use the convention that such input �les begin with the letters rd (which stands for \read"), but

this is not necessary. Thus, you will type something like read rddata2. You may also start the

executable and read the input �le on a single line with the command xuedge read rddata2. Some

example �les can be found in the location noted below in Sample Problems section. You can also

change any variable at the prompt by typing, say, runtim=1.e-10, to modify runtim.

Once all the variables have been set, you execute the code by typing exmain. What this does

is tell the BASIS system to execute the subroutine named exmain, which calls all the appropriate
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subroutines to execute a full run. It is also possible under BASIS to call other subroutines indepen-

dently, but this is usually only done for debugging purposes. Thus, a typical session with UEDGE

will look as follows:

xuedge

UEDGE> read rddata2

UEDGE> exmain

UEDGE>

The last prompt means the code has successfully completed the run and is ready for more input.

If you want to stop, just type end. You can also display the results without exiting from the BASIS

session.

3.2. Sample problems

There are a set of sample problems that can be run. For example, on the LLNL MFE SUN

system, one can go to the directory �rognlien/uedge/Applic/Examples. It is best to check with one

of the current users to learn more details of these examples.

3.3. Displaying results

You may want to list any variable or array to see what the solution looks like. For example,

the 2-D electron temperature is stored in the array te(0:nx+1,0:ny+1) in units of Joules. You may

specify the number of places to be displayed after the decimal point by typing fuzz=2, for example.

Thus, the following sequence will print out the electron temperature array in electron volts:

fuzz=2

te/ev

where ev=1.6e-19 Joules/eV is a variable in the code for converting from Joules to electron volts.

If you want to list some other variable to 4 decimal places you must �rst type fuzz=4, which will

hold until another fuzz= statement is typed.

You can also do plots of arrays to look at the present solution. To plot the function y(x), type

plot y,x. To do a contour plot of z(x,y), type plotz z,x,y.
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All of the commands useable at the UEDGE> prompt are in the BASIS command language,

which is extensive and powerful yet easy to learn. The BASIS manual can be read and searched

with a web browser (see the URL http://x�les.llnl.gov/basis/). The plotting package EZN is also

part of BASIS.

3.4. Instantaneous output and run termination

While running a time-dependent problem with any solver (except lsode, which is not a currently

supported option), you may obtain information on the present status of the solution by typing s

or status and a return. You will receive lines of output giving the total number of function and

preconditioner evaluations, nfe and npe, respectively, and the yl index ieq (imxtstep) of the equation

that is restricting the time step. A second index, imxnewt, gives the ieq of the equation that is

requiring the Jacobian to be reevaluated, if that is limiting the time step. In addition, it gives the

total simulation time and the present time step, dt. A third line gives detail data on the error

estimates from the ODE solver: bigts is for the time integration and dsm is for the Jacobian.

If you want to abort the present simulation and return to the UEDGE> prompt, type ctrl-c and

a return. At this point, BASIS with give the prompt DEBUG>; you now may query UEDGE for

variable values, etc., and then type cont if you want to continue the calculation. If you type abort,

to the DEBUG> prompt, you will return to the UEDGE> prompt. You can do this for DEBUG>

during either a time-dependent solution or a Newton iteration. If you then restart after changing

some parameters, the code initializes itself as though the aborted run had not taken place.

3.5. Restarting from present solution

If you are still in an active BASIS session, you can set restart=1 to use the present solution as

initial conditions for the next execution. You can also double the grid in both x and y directions

by being sure that newgeo=1, restart=1 and by doubling nxleg, nxcore, nycore, nysol, and nxomit.

The present solution is then interpolated to the �ner grid as the initial conditions for the new run.

This is conveniently done by reading a �le called double with BASIS (i.e., type read double) that

has the necessary parameter adjustments in it. You can double the mesh separately in the radial

or poloidal direction, or incrementally; see Sec. 3.7 for more details.
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3.6. Restarting from a BASIS portable PFB save �le

BASIS has a very useful facility to save any variables you wish to a portable �le that can be

read in a subsequent session. To do this, type create s�le, where s�le is some name you choose for

the data �le. Then you can save any variables you want by typing write x,y,te. This command can

be repeated; to stop the writing to this �le, type close. The minimum data set you must save in

a portable �le to make a restart is the set of plasma variables; you should also save any special

variable settings. An example for the minimum saving procedure is as follows:

create stest1

write nis,ups,tes,tis,ngs,phis

close

UEDGE uses the convention that the plasma variables used for restarting all have the letter \s"

appended to them.

To use the portable �le, you must be sure that you have the same grid size as that of the saved

data. You then execute UEDGE as for a normal run by reading input �les (but don't type exmain

yet). Then give the following commands:

allocate

restore stest1

restart=1

Here, allocate generates the appropriate arrays through dynamic allocation. At this point, one may

type exmain to begin the run with the values saved previously in stest1. It is convenient to save the

�nal state of converged runs in case you want to restart from them at some later date. Also, the

portable �les can be moved (using the binary mode of ftp) to computers using di�erent numerical

representations and used to continue runs.

Before version 10.0 of BASIS, a capability was present to create save�les using commands save

to, save, and save o�; users of more recent vesions do not need to concern themselves with this

di�erence. The portable �le capability (PFB or PDB) should be used now to create new �les, but

the user may want to use a version of UEDGE created with version 9.11 of BASIS to convert from
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the save�le format to the portable format. Use the readb command to read a save�le just as you

would use restore to read a portable �le. Then use create, write, and close to save the data in a

portable �le.

3.7. Interpolating the solution to a new mesh and restarting

UEDGE has three di�erent linear interpolating options; these are controlled by the switches

isnintp and isgindx. If isnintp=0, isgindx is immaterial, and the \old" interpolator is used that

only allows the users to double the mesh in each direction. That is, if you are starting from a

solution with a certain set of grid indices nxleg(1,1), nxleg(1,2), nxcore(1,1), nxcore(1,2), nysol(1),

and nycore(1), you must double all of these. This interpolation is rather crude in that it assumes

the mesh is uniform in each direction, but it works surprisingly well. However, doubling the mesh

in each direction is sometimes too large a change for the Newton method to converge on the �ner

mesh. The next two methods allow an arbitrary change in the number of mesh points.

If isnintp=1 the user may increase or decrease the mesh by any amount in either direction. For

this case, two options are available: isgindx=1 and 0. For isgindx=1 (default and recommended

setting), the interpolation occurs in index space as though the mesh is uniform. This case is thus

similar to the isnintp=0 option discussed above. However, there is a di�erence (other than the

arbitrary mesh change) in that here values are not interpolated across the separatrix or across

the radial cut through the x-point, but are rather extrapolated at these locations. The reason for

doing this across the separatrix is that linear interpolation often does a poor job because of the

abrupt change in variables there; it is done across the radial cut only for simplicity of the algorithm.

Treating the region above and below the separatrix independently (and on either side of the cut)

allows one to add extra mesh points in either region without perturbing the other.

For isnintp=1 and isgindx=0, the code does a linear interpolation using the actual (normal-

ized) mesh which is not uniform or rectangular. This scheme does not seem to outperform the

simpler index-based algorithm, and sometimes has trouble �nding the appropriate mesh points for

performing the interpolation. The message ***** grdinty cannot �nd straddling grid... is printed if

the algorithm fails to �nd the appropriate mesh points. In that case, switch to isgindx=1.

It is possible to interpolate from a save-�le solution, even if the code does not converge to this

case �rst. One needs to generate the old mesh and then type call gridseq from the UEDGE prompt
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(the BASIS parser). Alternatively, use a very loose tolerance for svrpkg=\nksol", say ftol=1.e10, so

the code will think it has converged after one iteration. The mesh may then be changed without

any extra call to gridseq.

4. Grid Generation

4.1. Mesh generation using MHD equilibria

The grid generated in UEDGE uses routines that are an extension and modi�cation of a grid

generator developed by M. Petravic at PPPL [26]. Data on the location of poloidal magnetic 
ux

surfaces are generated by one of various MHD equilibrium codes (e.g., TEQ, EFIT), and then read

into UEDGE via two �les. These �les must be named aeqdsk and neqdsk, and the switchesmhdgeo=1

and gengrid=1 must be set. If gengrid=0, UEDGE reads in a �le with the grid information already

in it called gridue. The gridue �le can be generated by a previous UEDGE run. For large problems,

precomputing the gridue �le and using gengrid=0 can save considerable storage. One can generate

the grid in UEDGE without running a complete problem; just type

call 
xrun

call grdrun

and the �le gridue with be generated. This call sequence is done automatically if you execute a full

problem by typing exmain.

There are a number of options available for the grid generation; we mention a few here. For

single-null con�gurations, set geometry=\snull"; for double null we use the lower half and set ge-

ometry=\dnbot". It is also possible to simulate the outer half of a single null or the lower, outer

quadrant of a double null where re
ection boundary conditions are used at the left boundary and no


ux is allowed through the outer (ix=ixpt2) cut at the x-point. To do this latter type of geometry,

set these variables:

nxomit # Number of poloidal grid points to omit before setting

# re
ection boundary condition. Files double, etc.

# automatically change nxomit to correct value

is�xlb = 2 # Sets re
ection bc at ix = nxomit and no-
ux bc at
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# ix = ixpt2 (outer x-point cut)

The radial distribution of the mesh is controlled by the following input parameters. The poloidal


ux, psi, is normalized to be unity on the separatrix and the radial boundaries of the mesh are

speci�ed by:

psi0min1 :
ux at the inner core boundary, 0.98 is typical

psi0min2 :
ux at the private-
ux region boundary, 0.98 is typical

psi0sep :
ux very near the separatrix, use 1.00005

psi0max :
ux at the outer wall boundary, 1.07 is typical

The number of radial cells in various regions is:

nycore(1) :number of radial cells in core (and private-
ux) region

nysol(1) :number of radial cells in scrape-o� layer

The input variable alfcy provides some additional control over the radial distribution of mesh

points. One can cause the 
ux surfaces to cluster near the separatrix by making the variable alfcy

somewhat larger than unity (2-3 is typical); if alfcy = 0, the radial mesh in the SOL is almost

uniform except near the x-point.

For double-null con�gurations the radial distribution of 
ux surfaces can be di�erent for the

inboard and outboard legs of the plasma. In this case psi0max and alfcy refer to the outboard leg

and one must supply additional input for

psi0max inner :
ux at 'outer' wall boundary on inboard leg

alfcy inner :cluster factor for 
ux surfaces on inboard leg

The poloidal distribution of the mesh is controlled by the following input parameters. The mesh

ends at the divertor plates which are de�ned by the separatrix strike points included within in the

input �le aeqdsk. The mesh is divided into various regions, and one can specify the number of cells

in each as follows:

nxleg(1,1) :number of poloidal cells in inboard leg between divertor plate and x-point

nxcore(1,1) :number of poloidal cells in inboard region of core
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:between x-point and top (or midplane for double-null)

nxcore(1,2) :number of poloidal cells in outboard region of core

:between x-point and top (or midplane for double-null)

nxleg(1,2) :number of poloidal cells in outboard leg between divertor plate and x-point

Additional control over the distribution of the mesh along the separatrix in the poloidal or

x-direction is provided by a function x(t) where t is the indexing parameter that labels the cells;

the grid points are spaced uniform in t for a given region (leg, or core), and the actual spacing in

x is determined by x(t). There are a number of options for x(t) controlled by the switch kxmesh:

kxmesh=0 :manual de�nition of seed points

kxmesh=1 :use linear*rational form for x(t) in divertor

kxmesh=2 :use linear*exponential form for x(t) in divertor

kxmesh=3 :use spline form for x(t) everywhere

kxmesh=4 :use exponential+spline form for x(t) in divertor

For kxmesh=0, one must �ll the arrays seedxp and seedxpxl. These arrays give the location on

the separatrix of the mesh points in percentage of the distance from the x-point to plate or x-point

to top of machine, etc; thus, all values must lie between 0-100 and be monotonic. A standard

procedure for setting the arrays seedxp and seedxpxl is to generate an approximate mesh with a

kxmesh.ne.0 option, and then read the �les rdgen.seedxp in directory uedge/in. This �lls the arrays

with the current mesh values, and one can then edit these arrays by inserting or moving points.

The resulting arrays should be saved into a PFB �le which can then be read in using the restore

command for generating the desired mesh with kxmesh=0.

For kxmesh=1 or kxmesh=2 the poloidal spacing of the cells between the x-points is nearly

constant unless one makes the variable slpxt larger than unity (1.2 to 1.3 is typical); having slpxt

> 1 causes the cells to cluster near the x-point on both sides, and thus often match more smoothly

with the cells in the divertor leg regions.

For kxmesh=4 the user speci�es sub-regions in front of each divertor plate: the variables nx-

gas(1:2) specify the number of cells in the region, the variables dxgas(1:2) specify the size of the

�rst cell at the divertor plate, and the variables alfx(1:2) specify the exponential factor for the cell-

to-cell variation in the region. The relation between dxgas and the total length of the exponential
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region, L, is given by L = dxgas*[exp(alfx*nxgas)-1]/[exp(alfx)-1].

4.2. Non-orthogonal grids

Non-orthogonal grids can be generated by setting the switch ismmon:

ismmon=0 :strictly orthogonal mesh (default)

ismmon=1 :poloidal mesh is compressed/expanded w.r.t. orthogonal

ismmon=2 :poloidal mesh varies smoothly on each 
ux surface

ismmon=3 :combination of ismmon=0,1,2

This switch a�ects the distribution of meshpoints on each 
ux surface, but does not alter the

the number or spacing of the 
ux surfaces.

For ismmon=1 the mesh is generated by deforming a previously generated orthogonal grid

along 
ux surfaces that intersect the divertor plates. The original mesh is uniformly compressed or

expanded in the poloidal direction until the end of the mesh just coincides with the divertor plate.

The compression or expansion occurs along each 
ux surface between some upstream reference

surface (such as the midplane) and the divertor plate. A smoothing procedure may subsequently

be applied to remove abrupt distortions in the mesh.

Options under the ismmon=1 setting are:

istream :de�nition of the upstream reference surface

:=0 (default) {> midplane in SOL, cut in p.f. region

:=1 user-de�ned

iplate :de�nition of the divertor plate surface

:=0 (default) {> orthogonal plate

:=1 user-de�ned

nsmooth :number of smoothing passes applied to each surface

:=0 {> no additional mesh modi�cation

:=2 (default) recommended

The user de�nes the divertor plates via the arrays
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rplate1(1:nplate1) zplate1(1:nplate1)

for the inboard leg of the divertor, and

rplate2(1:nplate2) zplate2(1:nplate2)

for the outboard leg of the divertor. Usually, one would read this information from a text �le

prepared speci�cally for the device being modelled. Examples of such �les for DIII-D, CMOD,

TPX, and ITER are available from the authors. NOTE: For complicated divertor geometries it

may be necessary to simplify the divertor plate de�nition to avoid intersecting any 
ux surface

more than once. The current version assumes there is only one intersection.

The user de�nes the �xed upstream reference surface via the arrays

rupstream1(1:nupstream1) zupstream1(1:nupstream1)

for the inboard half of the mesh, and

rupstream2(1:nupstream2) zupstream2(1:nupstream2)

for the outboard half of the mesh. Usually, one would read this information from a previously

prepared text �le. For example, on open SOL 
ux surfaces one might choose to modify the mesh

only downstream from the midplane and on private 
ux surfaces only downstream from the \cut"

under the x-point. The �le that does this is upstream.mpc available from the authors. The mesh

in the core region would not be modi�ed.

EXAMPLE: In addition to parameters for an orthogonal mesh, set the following:

ismmon=1 # switch on mesh modi�cation

istream=0 # use default upstream reference surface

iplate=1 # 
ag indicates user will supply plate de�nition

read plate. device# de�ne divertor plate surfaces

nsmooth=2 # use default smoothing of \radial" surfaces

For ismmon=2 the normalized poloidal distribution of mesh points is the same on each 
ux

surface. The distribution on the separatrix 
ux surface is de�ned according to the input parameter
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'kxmesh' described earlier in this writeup. This poloidal distribution is then normalized in terms

of the total poloidal connection length from the divertor plate surface to the top of the mesh

(for open SOL 
ux surfaces) or the cut under the x-point (for private 
ux surfaces). Then, on

each 
ux surface the poloidal distribution of mesh points is obtained by scaling the normalized

separatrix distribution with the poloidal connection length for that surface. The resultant mesh is

non-orthogonal even for orthogonal divertor plates.

Options under the ismmon=2 setting are:

istream :de�nition of the upstream reference surface

:=0 (default) {> top of the mesh in SOL, cut in private 
ux region

:=1 user-de�ned

iplate :de�nition of the divertor plate surface

:=0 (default) {> orthogonal plate

:=1 user-de�ned

nsmooth :number of smoothing passes applied to each \radial" surface

:=0 {> no additional mesh modi�cation

:=2 (default) recommended

EXAMPLE:

In addition to parameters for an orthogonal mesh, set the following:

ismmon=1 # switch on mesh modi�cation

istream=0 # use default upstream reference surface

iplate=1 # 
ag indicates user will supply plate de�nition

read plate. device # de�ne divertor plate surfaces

nsmooth=2 # use default smoothing of \radial" surfaces

4.3. Adaptive-mesh capability

The mesh can be modi�ed in response to the plasma state so as to obtain better resolution

in spatial regions where physics variables are changing most rapidly. At present, this capability

is limited to a poloidal re-distribution of mesh points along each 
ux surface. The number and
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position of the 
ux surfaces is not changed, i.e. the \radial" resolution is �xed. The basic idea

is to poloidally re�ne the mesh near a \
amefront" surface between the x-point and the divertor

plate(s). This process is not yet automated so the user must manually perform certain steps to

change the mesh and then obtain a plasma solution on the modi�ed mesh.

The user-callable subroutine mesh�(region) modi�es a reference mesh stored in arrays (cmeshx3,

cmeshy3) and writes the modi�ed mesh into the arrays (cmeshx,cmeshy). Here, region=1 for the

inboard leg and region=2 for the outboard leg. The mesh is modi�ed only between the x-point

and the divertor plate(s); the core and adjacent SOL regions of the mesh are unchanged. It is the

user's responsibility to store the appropriate data in (cmeshx3,cmeshy3) before calling mesh�. After

mesh� completes, it is necessary to call subroutine writeue which converts the (cmeshx,cmeshy)

data into (rm,zm) data and writes the �le gridue that is read by the plasma package when gengrid=0.

The 
amefront surface is de�ned by the user via the arrays r�1(1:n�1) and z�1(1:n�1) where

(r�1,z�1) are the (R,Z) coordinates [m] of the n�1 data points. The '1' here refers to the in-

board divertor leg; there are corresponding variables with '1'{>'2' for the outboard divertor leg.

Storage for the arrays r�1 and z�1 is dynamically allocated by setting n�1 and then calling

gchange(\grd.Mmod",0) from the parser.

Input data for the 
amefront (FF) mesh modi�cation includes -

isxtform :a 
ag for choosing one of three possible forms for

:the distribution of mesh points along a 
ux surface

iswtform :
ag for combining the original and FF meshes with constant

:weight factor (iswtform=0) or index-dependent weight factor (iswtform=1)

cwt� :shape factor for the iswtform=1 option

:on combining original and FF meshes.

For the inboard leg:

n�1,r�1(),z�1() :number of data points and (R,Z) coordinates of FF.

slpx�1 :slope reduction factor for x(ix) at FF position

:on each 
ux surface.

slpx�u1 :slope reduction factor for x(ix) at position upstream of FF on each 
ux surface.

slpx�d1 :slope reduction factor for x(ix) at position
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:downstream of FF on each 
ux surface.

nxd�1 :number of cells between FF and divertor plate on each 
ux surface.

wt�1 :maximum weight factor for combining original and FF meshes.

For the outboard leg: replace 1 by 2 in the variable names above.

The input data controls the form of the meshpoint distribution along each 
ux surface by

specifying various shape factors for an analytic function x(t) that gives the poloidal distance from

the x-point as a function of the poloidal meshpoint index. Let (t1,x1) represent the x-point, (t2,x2)

the 
amefront, and (t3,x3) the divertor plate.

For isxtform=1 we use a piece-wise functional form; on t1 < t < t2 use the rational function:

x(t) = x1 + (x2-x1)*(t-t1)/((t2-t1)+alpha*(t2-t)

and on t2 < t < t3 use the rational function:

x(t) = x2 + (x3-x2)*(t-t2)/((t3-t2)+beta*(t3-t))

where alpha and beta are chosen to give a speci�ed slope at t2. The slope is expressed as the

product of the average slope and a slope reduction factor slpx�, x'(t2) = slpx� * (x3-x1) / (t3-t1)

where a '1' or '2' should be appended to 'slpx�' for the appropriate divertor leg.

The isxtform=2 option uses a slightly more general form for x(t) which allows the user to also

specify the slope at the upstream point (t1,x1) in the form x'(t1) = slpx�u * (x3-x1) / (t3-t1)

where a '1' or '2' should be appended to 'slpx�u' for the appropriate divertor leg.

The isxtform=3 option uses a similar form for x(t) which allows the user to specify the slope

at all three data points via the slope factors slpx�, slpx�u and slpx�d:

x'(t1) = slpx�u * (x3-x1) / (t3-t1)

x'(t2) = slpx� * (x3-x1) / (t3-t1)

x'(t3) = slpx�d * (x3-x1) / (t3-t1)

where a '1' or '2' should be appended to 'slpx�u','slpx�' and 'slpx�d' for the appropriate divertor

leg.
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To facilitate a gradual transition from the original mesh to a 
amefront modi�ed mesh, the

two meshes are combined via a weight function, wt(t), to produce the �nal form of the meshpoint

distribution x(t):

x(t) = wt(t) * xFF(t) + (1-wt(t)) * x0(t)

where x0(t) represents the original mesh and xFF(t) represents the 
amefront mesh de�ned by

the isxtform options above. The form of the weight factor is controlled by the 
ag iswtform:

iswtform=0 -> constant wt(t)=wt� and iswtform=1 -> smooth increase from 0 at x-point to wt�

at 
amefront, where '1' or '2' should be appended to the 'wt�' for inboard or outboard regions.

The input parameter nxd� controls the number of cells downstream from the 
amefront on each


ux surface. At present, this number is the same for all 
ux surfaces. If nxd�=0, the number of

downstream cells for the 
amefront mesh is set equal to the number of downstream cells on the

separatrix 
ux surface of the original mesh; otherwise, the user-speci�ed value of nxd� sets the

number of downstream cells on the 
amefront mesh.

In summary, the steps necessary to use the adaptive mesh facility are:

1. de�ne the reference mesh via the grd package arrays (cmeshx3,cmeshy3).

2. de�ne the 
amefront surface for each divertor leg.

3. set various 
amefront mesh control parameters.

4. call subroutine mesh�(region).

5. call writeue to convert the (cmeshx,cmeshy) data to (rm,zm).

6. set gengrid=0 (or mhdgeo=0 for cartesian con�gurations) and isnonog=1 before executing

with exmain.

4.4. Adding poloidal cells near the x-point

The user may add extra poloidal cells near the x-point by setting the variables nxxpt and

nxmod. Here nxxpt is the number of extra cells added between the x-point and the poloidal face

nxmod indices away from the x-point for each of the four quadrants of a single-null divertor. This

then results in a total of 4*nxxpt extra poloidal cells given by
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total poloidal cells =nxleg(1,1)+nxleg(1,2)+nxcore(1,1)+nxcore(1,2)+4*nxxpt

nxmod should be 1 or greater, with nxmod=2 recommended; if nxmod=2, the two cells poloidally

adjacent to the x-point are recalculated including the number of extra mesh points, nxxpt. Note

that these cells are not strictly orthogonal, so it is safest to use the nonorthogonal di�erence stencil

(isnonog=1), but the error in not doing so may be small and is limited to the modi�ed x-point

region.

There is some control over the spacing of these extra cells through the variables alfxpt and

alfxpt2; alfxpt controls the nonuiformity of the poloidal mesh in the modi�ed region, and alfxpt2

controls how rapidly the poloidal face shape returns to a smooth arc as one moves away from the

x-point. The practical range of alfxpt is roughly 0.25 < alfxpt < 1, where alfxpt=1 gives uniform

spacing (the default) and alfxpt=0.5 gives the cell faces closer to the x-point by roughly 0.707. The

range of alfxpt2 is 1 < alfxpt2 < 2, where higher values force the mesh to return to a smooth arc

faster. It is best to try a few values and then look at the result by plotting the mesh with the

plotmesh script.

4.5. Top-of-mesh/limiter option

By default, the spatial extent of the \inboard" and \outboard" regions of the core/SOL are

delimited by a vertical line from the magnetic axis upward through the separatrix. This top-of-

mesh/limiter position can be changed by setting the switch islimon=1 and de�ning the poloidal

angle of the new top-of-mesh/limiter position, theta lim. Theta lim should lie with the limits -pi <

theta lim < pi and should not be too close to the x-point position. The outboard midplane position

corresponds to theta lim=0 and the default is theta lim=pi/2. The islimon=1 option automatically

turns on a procedure for checking the angular position of every data point on every 
ux surface, so

the 
x package may run slower.

4.6. Cartesian and cylindrical con�gurations

In addition to generating a mesh obtained from an MHD equilibrium code or model, UEDGE has

the ability to simulate simpler con�gurations, namely, either Cartesian or cylindrical geometries.

These options are controlled by the input variable mhdgeo; mhdgeo=-1 is used for a Cartesian
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con�guration and mhdgeo=0 is used for a cylindrical con�guration.

For the Cartesian case, one can set the following mesh parameters:

radx :position outer "radial" wall, across-B-�eld direction

radm :position of inner "radial" wall

rad0 :position of separatrix

alfyt :radial nonuniformity factor; < 0! expanding

is�xlb :set left poloidal boundary as sym. plane

za0 :\poloidal" symmetry plane location

zaxpt :\poloidal" location of x-point

zax :\poloidal" location of divertor plate

alfxt :poloidal mesh nonuniformity factor

bt�x :constant total B-�eld

bpol�x :constant poloidal B-�eld

Within UEDGE, the variable rm gives the \radial" distance across the B-�eld and zm gives the

poloidal distance.

For the cylindrical case, an annulus is simulated with a minimum radius of radm and a maximum

radius of radx; the radial coordinate is rm. The axial distances are controlled by za0 and zax. The

B-�eld is uniform and in the zm direction if one sets bpol�x=bt�x.

5. Running UEDGE in the Time-Dependent Mode

UEDGE can use a couple of automated ODE integrators. The variable name that selects the

integrator is called svrpkg, and one sets it by typing svrpkg=\iname" where iname is one of the

following:

iname = vodpk # preconditioned Krylov package for ODE's

iname = daspk # preconditioned Krylov package for ODE's & algebraic eqns

The default is svrpkg=\vodpk". This ODE solvers have been developed by G. Byrne [27] and

A. Hindmarsh, and is available through the NETLIB through the Web Site http://www.netlib.org/.
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There are also two Newton solvers with the names nksol and newton. More details of the Newton

solvers are described following the next section on time-dependent simulations. However, we have

found that using the nksol option with a timestep dtreal as described below in Sec. 5.5 is most

robust. The NKSOL modi�ed Newton solver (without the dtreal timestep) has been developed by

P.N. Brown and colleagues at LLNL and follows the procedures given in Ref. 28. More recent

replacements for VODPK and NKSOL which run on parallel computers are PVODE and KINSOL.

[29]. A version of UEDGE does run on parallel computers [30], but the operational details are not

included in this manual.

It is very e�ective to precondition the Jacobian matrix for both the time-dependent and the

steady-state Newton iterations. The options are discussed in the section on the Newton solver

nksol below (search for the words nksol and premeth). Here we just mention that three options are

available for the time-dependent mode, premeth=\banded", \inel", or \ilut".

5.1. Setting simulation time and diagnostic output

Output data concerning the performance of the time integration is stored in a sequence of evenly

spaced logarithmic time intervals. The number of outputs is set by isteps(1), which is defaulted to

100. The total simulation time is given by trange*runtim [sec]. The variable runtim gives the time

increment for the �rst interval; trange and runtim are defaulted to 1.e+7 and 1.e-7, respectively;

the default total simulation time is thus 1.0 sec. Speci�cally, the output time corresponding to the

cumulative output index, say iout, is tout = (1.17489756)**iout * runtim. The plasma variables

are also stored at these output times in the arrays nist1, upst1, test1, tist1, ngst1, and phist1 (see

subroutine uedriv in �le odesolve.m).

The most important thing to know from the last paragraph is that for the default settings, the

total simulation time is 1.e7*runtim seconds.

5.2. Calculation of Jacobian

We use the same subroutine, pandf, to evaluate the full right-hand sides of the ODE over the

whole grid, and to calculate the Jacobian. In calculating the Jacobian, the range of the do-loops

over the grid is restricted to the vicinity of the variable that is being perturbed. This range is

controlled by three variables: xlinc(=1) is the incremental range to smaller ix, xrinc(=2) is the
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incremental range to larger ix, and yinc(=1) is the incremental range to both smaller and larger

iy. One can test the Jacobian calculation by setting these to values larger than nx+1 and ny+1

so that the whole range of the do-loops is done for every perturbation; this is very ine�cient for

normal use, however.

5.3. Accuracy

The relative accuracy of the time-dependent integration is set by rtolv, which is a vector of

length 30 to allow for the possibility of setting up a maximum of 30 di�erent sequential runs where

one might change rtolv and runtim, for example; in practice, we may use 2 or 3 for grid sequencing.

For a given run rtolv is used to set the vodpk relative error variable rtol. We then de�ne the vodpk

absolute error variable atol(i)=catol*rtol*(guess at solution for variable i). Here catol stands for a

set of scale factors for each variable set, i.e., cniatol, cupatol, cteatol, ctiatol, cngatol, and cphiatol.

Typically, we choose rtolv=1.e-3 or 1.e-4, which is large by usual vodpk standards. However, we

want to reach steady state as quickly as possible. The usage of the large rtolv required us to add a

variable to the Krylov solvers for calculating the vector A*v by �nite di�erence. The perturbation

previously used for the �nite di�erence was rtol on the assumption that the user would choose rtol

�sqrt(machine roundo�) or�1.e-7 for the Cray. As we may have rtol�1.e-3, we let the perturbation

in the Krylov solver be srtolpk*rtol, with the default srtolpk=1.e-4 used to give a perturbation of

�1.e-7.

5.4. Boundary conditions for the time-Dependent mode

The boundary conditions are set in subroutine bouncon (see �le boundary.m). For the solver

vodpk, the boundary conditions are implemented as ODE's. For example, if we want the density

ni to be nb, then the equation is

@ni
@t

= �cnurn� nurlx(ni� nb) (1)

where nurlx=1.e8 [sec] is a large relaxation frequency to force the boundary condition to be satis�ed

on a time scale short compared to the evolution of the non-boundary variables. The scale factor

cnurn (=1 for default) applies only to the density equations. A similar equation is used to specify

a 
ux-like boundary condition. The other variables have the same type of boundary equations

and use the scale factors cnuru, cnure, cnuri, cnurg, and cnurp to allow independent adjustment for
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up, te, ti, ng, and phi, respectively. It should be noted that the potential equation, arising from

r � J = 0, has no time derivative when inertial and �nite charge e�ects are ignored, and thus is

treated this same way.

If one uses daspk as the solver, the boundary conditions are speci�ed as algebraic equations.

This guarantees that the boundary conditions are satis�ed at each timestep and should be viewed

as the preferable method. At the initial time, the algebraic equations must be satis�ed to a given

level of accuracy. This is now performed by e�ectively using the NKSOL Newton solver to satisfy

only the boundary conditions and the potential equation if it is switched on (isphion=1).

5.5. Using the NKSOL solver in a time-dependent mode

It is possible to use svrpkg=\nksol" in the time-dependent mode by setting dtreal to the desired

timestep in seconds. Here a term is added to each of the non-boundary equations to account for

a linear, or backward Euler, time advance; i.e., d(yl)/dt ! (yl new - yl old)/dtreal. It is possible

to also add the dtreal term to the boundary equations and the potential equation by setting the


ag isbcwdt=1; this can be useful for relaxing the complete system far from equilibrium and is

similar to what vodpk does. The number of such timesteps is controlled by the parameter nsteps nk

(defaulted to 1). If nsteps nk > nsteps, the time-dependent arrays test1(istep,ix,iy) will be �lled

until the number of steps exceeds nsteps, and then the last value will be overwritten with the last

value. This option is similar to the pseudo timestep method for NKSOL described below which is

controlled by the parameter dtnewt. Note that these cannot be used together, and an error message

is issued if dtreal and dtnewt are simultaneously less than 1.e5 seconds.

6. Running UEDGE with a direct Newton iteration to steady state

6.1. Switches and diagnostic output

To invoke the simple direct (non-Krylov) Newton iteration, set svrpkg=\newton" (note that this

option is now rarely used). The code then uses the subroutine newton to update the solution in

the form

�yl = �J�1F (ylold) (2)
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where F is the right-hand side of the ODE's, �yl is the change in yl, and J is the Jacobian. At

each iteration, the code prints out two lines of diagnostics. Here, sumnew1 is the average change

in the magnitude of the yl's for this iteration, sumr1dy is the average of abs(�yl=yl), and saux2

is the fraction of the Newton update allowed based on the variable rlx. Here rlx is the maximum

amount that any yl is allowed to change relative to its old value for a given iteration. The default is

rlx=0.4. The second output line gives sumf, the average of the magnitude of the right-hand-sides,

ivmxchng is the ieq index of the yl(ieq) that has the largest magnitude of �yl=yl, and the (ix,iy)

gives the location on the grid for this yl variable.

6.2. Preconditioning for the svrpkg=\newton" case

Only premeth=\banded" works for this option. It uses the direct banded solver SGBFA. An

error message will be received if any other option is speci�ed for premeth when svrpkg=\newton".

6.3. Determining convergence trends and abort command

The Newton iteration should show a clear trend toward convergence, i.e., sumnew1 and sumf

decreasing after 5 to 10 iterations. If this does not occur, experience shows that convergence is

very unlikely. To abort the iteration, type ctrl-c which will return you to the DEBUG> prompt;

following the instructions that appear on the terminal, you may interrogate UEDGE and then

type cont to continue, or type abort to return to the UEDGE> prompt. Another good measure of

convergence is the initial value of saux2; if saux2 < 1.e-2, convergence is very unlikely, if 1.e-2 <

saux2 < 1.e-1, convergence is somewhat likely, and if saux2 > 1.e-1, convergence is quite likely.

The criterion for convergence is that sumnew1 < rwmin, with rwmin=1.e-11 as the default.

Other useful control variables are nmaxnewt which is the maximum number of iterations that the

code will try (with a absolute hardwired upper limit of 101). The variable scrit causes the old

Jacobian to be used if the average of abs(�yl=yl) is less than scrit; the default is scrit=1.e-4.
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7. Running UEDGE with Krylov-Newton Iterations to Steady State

7.1. Switches and diagnostic output

To invoke the preconditioned Krylov Newton solver option based on Peter Brown's NKSOL

package, set svrpkg=\nksol". The nksol option is generally preferred over the newton option.

There are a variety of options for this package that are brie
y described in the variable descriptor

�le bbb.v (groups Lsode and Ilut). Commonly changed 
ags are mfnksol, mdif, and mmaxu:

mfnksol = 1 :dogleg search strategy using GMRES iterative solver

= 2 :linesearch with Arnoldi method iterative solver

= 3 :linesearch with GMRES method (default)

mdif = 0 :Matrix-vector multiply J*v is approximated by numerical

:�nite di�erence of RHS (default)

= 1 :Matrix-vector multiply J*v is done directly with current J

rlx = 0.4 :restricts relative change of density and temperatures to be

:less than rlx at each point

stepmx =1.e9 :restricts global change of variables, sum[sqrt[(del(u)**2)]],

:to be less than stepmx. Can be used instead of rlx.

itermx = 30 :Maximum number of nonlinear iterations

incpset = 5 :Maximum nonlinear iteration before Jacobian is reevaluated

mmaxu = :Now calculated internally with the algorithm mmaxu=neq**0.5

:To set a speci�c value at input, set ismmaxuc=0 (default is 1).

epscon1 = 0.1 :Use to de�ne tolerance of linear iterative matrix solutions

:with the algorithm epsfac= epscon1*min(epscon2+frnm). Final

:tolerance is epsfac*frnm

epscon2 =1.e-2 :Use to de�ne tolerance of linear iterative matrix solutions

:with the algorithm epsfac= epscon1*min(epscon2+frnm). Final

:tolerance is epsfac*frnm

Note that negative values ofmfnksol have the same meaning as the positive ones, except that the

global constraints are not used (so fnrm can increase substantially from one iteration to another).
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7.2. Preconditioning options

An important part of the Newton iteration is the preconditioning of the Jacobian matrix. There

are several methods available and these are controlled by the 
ag premeth=\iname"; the di�erent

options for the preconditioner are:

premeth=\banded" :uses the direct banded solver SGBFA. Requires a lot of

:storage for large problems, but is fast on the Cray for

:moderate size problems

premeth=\inel" :uses a partial LU decomposition with �ll-in on existing

:diagonals of Jacobian only; called ILU0

premeth=\ilut" :uses a partial LU decomposition about existing elements of

:Jacobian - not based on diagonals only. Amount of �ll-in controlled

:by l�lilut; typical problems require l�lilut=3 to 100.

The output data on performance of the nksol routine at each nonlinear iteration is controlled

by the 
ag iprint. No output occurs if iprint=0. If iprint=1 (default), the iteration count, norm of

the residual, and number of right-hand-side evaluations are printed, indicating roughly the number

of linear iterations. If iprint=2, detailed data concerning the linear iteration is printed for each

nonlinear iteration: the norm of the residual and the value of norm required to meet convergence

test. Also, if the constraint condition preventing negative densities or temperatures, or a relative

step size is too big [Del(u)/u > rlx], resulting in a reduced step size, the message ivio=1, pnrm=...

will appear.

7.3. Row and column scaling and rescaling

Several techniques are used to improve the numerical properties of the Jacobian preconditioning

matrix and to better condition the nonlinear Newton problem. The most straightforward is scaling

the rows of the Jacobian by the largest element in the row; this is e�ected by the switch issfon=1

(default) which generates the scaling vector sfscal. This scaling is actually applied to the Jacobian

if isrnorm=1 (default).

Column scaling is a more recent addition (mid-1995) and is turned on by the switch iscolnorm

(default=0). Presently, either iscolnorm = 2 or 3 is recommended, and both have nearly the same
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e�ect; 2 completely disregards the old global scaling and 3 does the column scaling after the global

scaling. The column scaling is essentially a local normalization of the variables over the mesh to

be of order unity, which improves the numerical solve-ability of the system.

Rescaling of the Jacobian matrix is activated by the switch ireorder=1 (default). This causes

the Jacobian to be reordered using the reverse Cuthill-McKee algorithm. Typically it reduces the

number of linear Krylov iterations by 30-50%, but can make the di�erence between convergence

and no convergence.

7.4. Pseudo-transient timestep

A pseudo timestep can be added to the Jacobian for svrpkg=\nksol" which generally increases

the radius of convergence (one can take larger steps away from existing solutions), but decreases

the rate of convergence. The timestep adds a diagonal term to the left-hand side of the linear

matrix equation but not to the right-hand side. Speci�cally, consider the time-dependent equation

for a vector of variables x of the form dx/dt+f = 0. Performing a Taylor series expansion gives the

Jacobian, J, and
(xn � xo)

dt
+ J � xn = �f(xo) (3)

where xo and xn are the variable values at the old and new timestep, respectively. The pseudo

transient technique neglects the �xo=dt, but retains xn=dt, yielding the equation

(I=dt+ J) � xn = �f(xo) (4)

where I is the identity matrix. This additional term is added to both the preconditioning Jacobian,

and to the J � x �nite-di�erence Jacobian-vector product calculated in the Krylov algorithm.

In UEDGE, the pseudo timestep, dt, is called dtnewt. The default value for dtnewt is 1.e20

seconds which e�ectively removes the I/dt term. To use this technique, it is typical to start with

dtnewt=1.e-5 to 1.e-4, and run for about 10 iterations (set itermx=10). The residual as measured

by fnrm should be decreasing, but do not expect convergence. Then update the \save" variables

by doing a read reset, increase dtnewt by a factor of 3 or 10, and repeat the procedure. By the

time you get to dtnewt=1.e-3, or so, the convergence should be accelerating, and one can often

increase dtnewt by larger factors; typically, dtnewt=0.1-1.0 is almost equivalent to dtnewt=1.e20.

As of yet, there is no systematic procedure coded for automatically running through the sequence
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described above, although Knoll and McHugh have had some success with the Switched-Evolution

Relaxation (SER) method.

8. Boundary Condition Options

8.1. Specifying gas input and pumping on the side-walls

One can specify up to 10 sources (or sinks - pumping regions) on the outer wall (iy=ny) and

10 on the inner wall (iy=0) by setting the variable nwsor to the number desired. The sources

come in pairs, but the inner and outer parameters can be speci�ed independently. These gas

boundary conditions are set up in subroutine walsor. Each source uses a variable called igspsori(i)

or igspsoro(i) for the inner and outer wall sources, respectively that de�nes which gas species the

source contributes to. Thus, igspsori(i)=j means that source i contributes to gas species j.

The location of the sources is set by xgasi(i) and xgaso(i) for inner (private 
ux) and outer

walls, respectively. To set these input parameters, it is helpful to examine the arrays xfwi and

xfwo which give distances along these 
ux surfaces. If issorlb(i)=1, the distances xgasi,o(i) [m] are

measured from the inner, or left divertor plate; if issorlb(i)=0, the distances are measured from the

outer, or right divertor plate. The total width of the region is given by wgasi,o(i); if igasi,o(i) > 0,

the source is taken to be a gas source with a cosine shape over the de�ned region, going to zero at

the edge. If there are multiple, �nite strength sources present, the net source at a given location is

the sum of all of the overlapping sources.

The special setting of igasi,o(i)=0 is used to specify a pumping region with a uniform albedo

de�ned by albdsi,o(i) over the region of the source. The albedo of the side walls are speci�ed for

each gas species separately as follows: For each source which has igasi,o(i)=0, the second variable,

igspsori,o(i), de�nes which gas species the source de�nes the albedo for, just as for �nite gas sources

(see above). For example, if you want to set the albedoi (for the private-
ux wall) for gas species

1 to 0.95 and that of gas species 2 to 0.90, you should use two sources by setting nwsor=2, and

igasi(1:2) = 0

xgasi(1:2) = 0

wgasi(1:2) = 1000.

igspsori(1) = 1
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albdsi(1) = 0.95

igspsori(2) = 2

albdsi(2) = 0.90

Here wgasi is set to a large number to span the whole simulation region. The gas input depends

on the number of gas species used. If only one gas species is used (ngsp=1), the current igasi,o(i)

is the boundary condition for that single species in the given region and one needs to account for

simultaneous pu�ng and pumping by reducing the net gas input.

The wall sources can also be used to redistribute the gas 
ux absorbed at one location by

injecting it at another location. This coupling is limited to reinjecting gas from the same region

(private-
ux or outer-wall) from which it escapes. Here the neutral 
ux is calculated from the

albedo de�ned over a speci�ed source region, and then reinjecting as a gas 
ux over a di�erent (or

the same) region with a cosine distribution characteristic of the sources. As an example, consider

the current produced by the albedo albdsi(k) over the region speci�ed by source k with location

and width xgasi(k) and wgasi(k), respectively. To reinject this current over the region speci�ed by

source j, with location and width xgasi(j) and wgasi(j), set ncpli(k)=j to establish the coupling,

and set cplsori(k) equal to the fraction of the current that will come through the source with index

j [cplsor(k)=1 gives the full current at source j]. Note that one may use k=j.

One can also specify the side walls as material surfaces that emit recycled gas. This is done

by switching on the 
ag matwsi,o(i)=1 for a given wall source with igasi,o(i)=0.; if igasi,o(i) is

nonzero, the gas input boundary conditions will be used and not the material wall condition even if

matwsi,o(i)=1. The gas input at the boundary for matwsi,o(i)=1 is determined by the wall recycling

coe�cients recycw(1) for hydrogen. The models for material side walls are still evolving, so users

should check with the authors if they intend to use this option.

The end plates are also sources of neutrals, where the gas 
ux is speci�ed as -recycp*(ion 
ux).

Again, recycp(1) refers to the 
ux into the hydrogen gas, and recycp(2...) refers to impurity gases.

8.2. Other side-wall boundary condition options

There are several options to use for the density and temperature boundary conditions on the

private-
ux wall (iy=0) and the outer wall (iy=ny+1).
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Constant value (Dirichlet) boundary conditions:

For ion density, set isnwconi=1 for the private 
ux boundary (iy=0) and isnwcono=1 for the

outer wall boundary (iy=ny+1). The density values can be set through the poloidal arrays nwalli

and nwallo for the inner and outer walls, respectively. Be careful if the mesh is increased and

interpolation is used, as one must then update nwalli and nwallo.

For electron and ion temperature, set istepfc=1. and istipfc=1. for the private-
ux boundary,

and set istewc=1. and istiwc=1. for the outer wall boundary. Each of these switches can be set

separately. The temperatures are then set to tedge (eV) or can be given separate and poloidally

varying values through the arrays tewalli, tiwalli, tewallo, and tiwallo, where the �nal letter denotes

inner(i) or private-
ux boundary and outer(o), or outer wall boundary. Before you set tewalli, etc.

to nonzero values, you must allocate memory for these arrays by typing allocate at the basis prompt.

In using this option, be careful of interpolating to a larger grid, as the tewalli, etc will have to be

manually interpolated after the allocate.

Flux (Neumann) boundary conditions:

For ion density, be sure that isnwconi and/or isnwcono = 0, as well as isextrnpf and/or isextrnw

= 0 and i
uxni=1. Because there is a possibility of con
ict between the switches, the order of

dominance is as follows: isextrnpf, isnwconi, and �nally i
uxni. The same is true for isextrnw,

isnwcono, and i
uxni.

For electron and ion temperature, set istepfc=0., istipfc=0., istewc=0., and istiwc=0. This

results in the normal derivative being set to zero, dT/dy=0. Note that the switches istepfc, istipfc,

istewc, and istiwc are real variables that take on any value. Thus, you can continuously evolve

from one boundary condition to the other by taking fractional steps between 0. and 1.0. This can

be especially useful for Newton iterations.

Extrapolation boundary conditions:

For the density and temperatures, it is possible to set extrapolation boundary conditions at

iy=0 and iy=ny+1. This condition sets the boundary value to be a linear extrapolation of the

previous two points in the radial direction. For the density, the inner (private 
ux) and outer wall

switches are isextrnpf and isexrtnw, respectively, and setting either to 1 forces the extrapolation

condition independent of the settings of the other switches. For the temperature, both the electron
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and ion values are set together for the inside or outside with variables isextrtpf and isextrtw. Again,

if the extrapolation switches are set to 1, they take precedence over any setting of istewc, etc.

8.3. End-plate boundary condition options

The ion parallel velocity is taken to be the sound speed multiplied by the user-set scale factors

csin and csout at the inner and outer divertor plates, respectively. If the switch isupss=1, then the

parallel velocity is allowed to be supersonic at the plate if the solution seeks this state.

The recycling coe�cients at the plates can be made a function of radial position or an albedo

can be speci�ed over a limited region to pump gas through the plate. The following variables are

used to set the recycling and albedos:

ndati(igsp) # number of data points along plate; if=0, recycling

# is uniform and speci�ed by recycp*recyc�

ndato(igsp) # number of data points along outer plate; if=0,

# recycling uniform and speci�ed by recycp*recycfo

ydati(igsp,idat) # dis. from inner sep. of data point for rdati & albpi

rdati(igsp,idat) # value of recycling coe�. at plate location ydati;

# in between data points, linear interp. is used

adati(igsp,idat) # value of albedo at data point ydati; lin. interp used

ydato(igsp,idat) # outer-plate counterpart to ydati

rdato(igsp,idat) # outer-plate counterpart to rdati

adato(igsp,idat) # outer-plate counterpart to adati

If the albedo in any segment along the plate is less than unity (the default), then the albedo

boundary condition for the gas takes precedent over the recycling boundary condition. Note that it

only makes sense to use at least two data points on the inside or outside because linear interpolation

is used between the points. Operationally, one needs to �rst generate the mesh and run through

nphygeo (just do a very short calculation) to generate the mesh locations relative to the separatrix

on the plates; these are yylb and yyrb for the inner plate (left boundary) and outer plate (right

boundary), respectively. With this information, you can decide where to put your data points

(ydati and ydato).
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8.4. Boundary conditions at the core interface

The ion density boundary condition is controlled by the variable isnicore(i
d), where i
d is the

index of the ion density, ni(i
d). Thus, the settings of isnicore correspond to:

isnicore=1: set uniform, �xed density, ncore

isnicore=0: set 
ux to curcore

isnicore=2: set 
ux & ni over range

isnicore=3: set integrated 
ux, const ni

isnicore=4: use impur. source terms (impur only)

The gas density boundary condition is controlled by the variable isngcore(igsp), where igsp is the

index of the gas species, ng(isgp). Note that inertial neutral gas is controlled by isngcore(1). Thus,

the settings of isngcore correspond to:

isngcore=0: set zero 
ux

isngcore=1: set uniform, �xed density, ngcore

isngcore=2: set rad. grad. to sqrt(lam i*lam cx)

isngcore=3: extrap. for di�. gas only

isngcore=anything else: set zero deriv which was prev default for inertial hydrogen

In restarting from a isnicore=0 case (zero 
ux), use mfnksol=-3 if svrpkg=\nksol". For the core

temperature boundary conditions on Te and Ti, one may set either a speci�ed power for electrons

and ions as pcoree,i in Watts and setting the switch i
core=1. To use �xed temperature boundary

conditions, set i
core=0, and then tcoree and tcorei give the electron and ion temperatures on the

boundary in eV, respectively. The parallel velocity boundary condition is set by isupcore, where

isupcore = 0: set up=0 on core edge

isupcore = 1: set d(up)/dy=0 on core edge

isupcore = 2: set uu=0 on core edge, where uu is poloidal velocity.

8.5. Sputtering boundary conditions for the gas species

There can be wall or plate sources of gas that arise from sputtering, either physical or chemical.

These are controlled by two 
ags for each gas species, isph sput(igsp) for physical sputtering and
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isch sput(igsp) for chemical sputtering.

8.5.1. physical sputtering on plates

We consider two settings for the switch isph sput(igsp).

For isph sput(igsp) = 0:

The sputtering of gas species igsp is controlled by the simple yield factor sputtr if the sputtering

arrays sputto(iy,igsp) and sputti(iy,igsp) are zero as at the initialization of a run. Then sputto,i  

sputtr. However, to change the sputtering after it has been set initially by sputtr, you must directly

change the arrays sputti(iy,igsp) for the inner plate and sputto(iy,igsp) for the outer plate.

For isph sput(igsp) = 1:

This setting uses the DIVIMP/JET model obtained from David Elder. To use this properly,

you must set the following input parameters:

cion # atomic number of the target material; default is 6 for carbon

cizb # max charge state of plasma ions; default is 1 for hydrogen

crmb # mass of plasma ions in AMU; default is 2. for deuterium

The resulting yield along the divertor plate is put into the arrays sputti(iy,igsp) and sputto(iy,igsp).

8.5.2. chemical sputtering on side walls

Similarly, on the side wall, we use the switch isch sput, but it now has more than just two

options.

For isch sput(igsp) = 0:

This setting allows the user to specify the chemical sputtering yield by initializing chem-

sputi,o(i,j), where the resulting 
ux boundary condition for gas species i is then

fngy(igsp=i) = Sum j [chemsputi,o(i,j)*ng(j)*vt*sy]

For isch sput(igsp) > 0:
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Note that isch sput(igsp) should be nonzero for only one gas species and this species should be

carbon. These settings (1-7) use various models for the chemical sputtering of carbon from the side

walls; this package comes from DIVIMP via David Elder (U. Toronto, private comm., 1998). The

various models are:

isch sput Options for chemical sputtering:

1 Garcia-Rosales' formula (EPS94)

2 according to Pospieszczyk (EPS95)

3 Vietzke (in Phys. Processes of Interaction Fusion Plasma with Solids

4 Haasz (Submitted to J.Nucl.Mater.,Dec. 1995)

5 Roth & Garcia-Rosales (Nucl. Fusion, March 1996)

6 Haasz 1997 (Brian Mech's PhD Thesis)

7 Haasz 1997 + reduced 1/5 from 10->5 eV (Porter)

It is recommended that isch sput = 5 or 6 be used, although recently G.D. Porter has a new

�t (7) which departs from (6) at low energy, and is a better �t to the (Haasz) data at the low

energy. Other input is the temperature of the surface, t surf, in degrees K; the default is 300 K.

The resulting chemical sputtering yield is stored in the arrays yld carbi,o(ix) along the inner and

outer walls.

9. Sources and Sinks

It is possible to specify �xed particle, current and energy sources having speci�c locations and

Gaussian widths through the arrays volpsor, voljcsor, pwrsore, and pwrsori. These are part of the

variable group Volsrc, and various control parameters are brie
y described in the variable descriptor

�le, bbb.v.

The sources and sinks are normally determined by ionization of neutral gas and recombination

of ion-electrons into neutrals. A special background source is used to prevent the neutral density

from becoming too small. The gas continuity has the form

@ng

@t
+r � (ngvg) = �nuiz(ng � bgsor) (5)
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where ng = ng is the gas density, and bgsor is given by bgsor = ngbackg*(0.9+ 0.1*(ngbackg/ng)**ingb).

Normally, nbackg=1.e15 m**(-3), and ingb=0 for defaults. However, sometimes it is useful to set

ingb=2 or larger to prevent \pump out" of low density cells.

10. Flux-Limiting Transport Coe�cients

The 
ux limits used in UEDGE for the parallel transport are of the form

� = �s=[1 + jqs=qf j
flgam]1=flgam (6)

where �s is a classical (Spitzer) di�usion transport coe�cient, and 
gam=1 is the default value

(seldom changed). The second heat 
ux, qf is the free-streaming 
ux de�ned by qf = flalfe �

ne � vte � te, where 
alfe is a parameter often set to 0.21 to match some kinetic modeling, ne is the

electron density, vte=sqrt(te/me), and te is the electron temperature. If 
alfe=1e20 (the default),

the 
ux limiting is e�ectively switched o�. There are three 
ux limits used for the plasma:


a
e (recommend=0.21) :for electron parallel heat 
ux


a
i (recommend=0.21) :for ion parallel heat 
ux


a
v (recommend=1.0) :for ion parallel viscosity

These parameters are all defaulted to large values (1e20 or 1e10) which gives e�ectively no


ux limiting. The recommended values are obtained from �ts to Monte Carlo and Fokker Planck

calculations, but are not universal.

There are also 
ux-limiting coe�cients for the di�usive gas 
uxes. These are called 
alfgx,


alfgy, and 
alfgxy for di�usion driven by the density gradients in the x-, y-, and nonorthogonal

xy- directions. In addition, 
uxes can be driven by gradients in temperature which have 
ux-limit

coe�cients 
alftgx and 
alftgy. Finally, the neutral gas viscosity coe�cients can be limited through

the parameters 
alfvgx and 
alfvgy. All of the gas 
ux-limit parameters are defaulted to large

numbers, but physically reasonable values are in the range of unity which are left as an option

for the user. Our experience is that the code can have di�culty with these 
ux limits if gradients

become too steep - this is the reason for having them switched o� as a default.
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11. Models for Neutral Gas

11.1. Fluid and di�usive models for atoms

UEDGE uses two models for the neutral gas, the most general being a 
uid model that solves

the parallel momentum equation along the direction of the magnetic �eld,B, and di�usion in the

two directions perpendicular to B (implemented by F. Wising). For this model, set isupgon(1)=1,

isngon(1)=0, nhsp=2, and ziin(2)=0. Neutral viscosity and thermal conduction is included using

both charge-exchange collisions and neutral-neutral collisions.

The simpler gas model solves a di�usion equation in the 2-D poloidal plane. For hydrogen, it is

activated by setting isngon(1)=1, isupgon(1)=0, and nhsp=1. The di�usion coe�cient is given by

D g=Ti/[mi*(nucx+nuiz)].

The impurity gas is modeled by the di�usion equation just mentioned and is activated by

setting isngon(2)=1 (if more than one impurity species is present, then isngon(3)=1, etc.). Here the

di�usion coe�cient is somewhat more general by including elastic collisions as D g=Tg/(mg*nuix),

where

nuix = rcxighg*nucx h + nuiz + massfac*(kelighi*ni h + kelighg*ng h)

Here, nucx h is the charge-exchange frequency between hydrogen neutrals and impurity ions, rcxighg

is a scale factor (usually small) to convert this rate to that between impurity neutrals and hydrogen

ions. To account for elastic collisions of impurity gas with hydrogen ions and gas, we use the last

two terms. Details of this model were suggested by S. Krasheninnikov, where

massfac = 16*mi h / [3*(mi imp + mi h)]

and kelighi and kelighg are the hsigma-virates. Estimated values are kelighi = kelighg = 5e-16

m**3/s at temperatures of � 1 eV, but the temperature dependence is neglected. The precise

values are uncertain. Values of kelighi and kelighg should be set in the users input �le. Thus, if you

set rcxighg=0., you should set kelighi(igsp) = kelighg(igsp) = 5.e-16, or some more accurate value

if available. This procedure prevents D g from becoming very large in low temperature (� 1 eV)

regions when rcxighg=0 and nuiz are very small.
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11.2. Options for temperature of neutrals

One can let the neutrals have a multiple of the common ion temperature or use a speci�ed

constant value. These options are controlled as follows:

If istgcon=0, then

the gas temperature, tg, is a multiple of the ion temperature, ti.

Speci�cally, then tg=rtg2ti*ti across the whole mesh.

If istgcon=1, then

tg = tgas*ev, where tgas is an input variable in eV, and tg has this

same constant value across the mesh.

11.3. Inclusion of 
uid molecules

A 
uid component can be used to represent the molecules which evolve from the wall to describe

the thermal desorption phase of recycling; this is usually the dominant recycling channel.

To include hydrogen molecules, one should set the following input parameters:

ngsp = 2 # if no impurities are present

nhgsp = 2 # tells code that two hydrogen gas species are present

ishymol = 1 # switch to turn on hydrogen molecules

recycp(1)= -0.5 # neg. recycp(1) acts like -albedo for atomic gas

recycp(2)= 0.98 # recycling into molecular channel for ions + atoms

recycw(1)= -0.5 # neg. recycw(1) acts like -albedo for atomic gas

recycw(2)= 0.98 # recycling into molecular channel for ions + atoms

cdifg(2) = 0.05 # reduces mol gas di� coe� to simulate wall temp

Note that recycp applies to the divertor plates and recycw applies to the side walls when matwsi,o

> 0. The second gas species then corresponds to the molecules while the �rst is the atomic species.

The atomic species can be either di�usive neutrals or 1-D Navier-Stokes as described just above.

The di�usion coe�cient for the molecular gas is D g=cdifg(2)*Tg/(mg*nuix), where nuix is now

given by
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nuix = nu diss + massfac*(kelighi*ni h + kelighg*ng h)

where nu diss is the dissociation rate calculated using a polynomial �t obtained from the EIRENE

neutral Monte Carlo code and massfac is de�ned in the previous section.

11.4. Coupling to Monte Carlo neutral codes

The hydrogenic 
uid neutrals model can be turned o� and replaced by a Monte Carlo neutrals

model. In the simplest scheme, one uses a numerically explicit time-dependent coupling of plasma

and neutrals models, with the models communicating via disk �les. The UEDGE plasma mesh

information is written to a disk �le, fort.30, with the command:

call write30(\fort.30", runid)

The UEDGE plasma background information, i.e., density, temperatures and 
ow velocity, is written

to a disk �le, fort.31, with the command:

call write31(\fort.31", runid)

where runid is some header text to identify the run.

The hydrogenic 
uid neutrals model is turned o� and the Monte Carlo neutrals on via the

switches:

nhsp=1

isupgon(1)=0

isngon(1)=0

ismcnon=1

which turns o� the hydrogenic 
uid neutrals contributions to the plasma source terms for ion

density, ion parallel momentum, electron temperature and ion temperature. The user must replace

these sources with corresponding sources from the Monte Carlo neutrals model at each time step

before executing the plasma model with exmain. For the EIRENE Monte Carlo code, the procedure

is as follows:
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1. call read32(\fort.32"); this reads a data �le, fort.32, which contains normalized plasma source

terms due to each 'stratum' in EIRENE; the data arrays are sni, smo, see, sei and the normal-

ization constant(s) wsor.

2. convert from normalized source terms to physical source terms, e.g., mcnsor ni = -wsor*sni

3. convert the source for total ion energy to a source for thermal ion energy only, i.e., mcnsor ti

= mcnsor ti - up*mcnsor up + (.5*mi*up**2)*mcnsor ni

4. compute total plasma sources by summing over all 'strata', e.g., uesor ni(ix,iy,i
d) = sum on

istra [mcnsor ni(ix,iy,i
d,istra)]

After executing the plasma model, one writes the plasma background data for the next Monte

Carlo neutrals calculation with a call to subroutine write31 as noted above.

The Monte Carlo code can be executed from within UEDGE via the parser command:

basisexe(\eirobjx < input.dat > eir.log")

where eirobjx is the name of the executable and input.dat and eir.log are standard input and output

�les for the EIRENE code. Some diagnostic output from the EIRENE code is accessible within

UEDGE with the parser command:

call read44(\fort.44")

In particular, the atomic neutral density in the array naf(1:nx,1:ny,1) may be compared with the


uid model result inng(1:nx,1:ny,1). A similar procedure is followed for coupling to the DEGAS2

Monte Carlo code [31].

12. Models for Hydrogen Ionization, Radiation, and Recombination

The calculation of the ionization, radiation, and recombination terms in the ion and gas con-

tinuity equations is taken either from an analytic model or linear interpolation of data from table

look-up. For most of the options, recombination is switched on by isrecmon=1. The model used is

controlled by the variable istabon and has the following options:
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istabon=0 :Analytic model for ionization (from Braams in B2) and

:charge-exchange; no recombination

istabon=1 :Tables from ADPAK by Hulse via Braams; not recommended

:by Doug Post for the low temperature (< 50 eV) regime

istabon=2 :Tables from STAHL by Behringer at Garching via Braams

istabon=3 :Tables used in DEGAS from Janev, Post, et al., 1984

istabon=4 :Extended-DEGAS tables from Doug Post '93 for temperatures

:down to .063 eV and densities up to 1.0e+23 /m**3;

:linear interpolation is done for rsa vs log Te and log ne;

:analytic model for charge-exchange.

istabon=5 :Same extended-DEGAS tables as option 4, but with spline

:interpolation for log10(rsa) vs log(te) and log10(ne)

istabon=6 :Same extended-DEGAS tables as option 4, but with spline

:interpolation for rsa vs log(te) and log10(ne)

istabon=7 :Campbell's polynomial �t for rsa vs log10(te) and log10(ne)

istabon=8 :New DEGAS tables from D. Stotler Oct '93; separate electron

:radiation loss rates due to ionization and recombination;

:linear interpolation as in option 4; radiative loss rates

:more accurate than option 4 for low Te and/or large ne.

istabon=9 :from Stotler at PPPL ( 95/07/10) using log(Te)-sigv

istabon=10 :from Stotler at PPPL ( 95/07/10) using log(Te)-log(sigv)

The presently preferred table is istabon=10 which is a more complete table from that reported in

Ref. 32.

One can �nd the value of various rate parameters by calling the appropriate function from the

BASIS parser with speci�c arguments (not arrays). These are functions for hsigma*viand are as

follows:

rsa(te(ix,iy),ne(ix,iy),0) :hsigma*vi ionization [m**3/s]

rcx(ti(ix,iy),ni(ix,iy),1) :hsigma*vi charge exchange [m**3/s]

rra(te(ix,iy),ne(ix,iy),1) :hsigma*i recombination [m**3/s]

The radiative loss rates associated with ionization and recombination can be obtained by calling
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the following functions:

erl1(te(ix,iy),ne(ix,iy)) :ne*hsigma*v*E radi ioniz [J/s]

erl2(te(ix,iy),ne(ix,iy)) :ne*hsigma*v*E radi recom [J/s]

The calculated collision frequencies on the 2-D mesh are stored and can be viewed in the

following variables:

nuiz(ix,iy) :ionization frequency [1/s]

nucx(ix,iy) :charge-exchange frequency [1/s]

nurc(ix,iy) :recombination frequency [1/s]; need isrecmon=1

The total (radiation + 13.6*ev) electron energy loss per ionization on the 2-d mesh is stored

and can be viewed in the following variable:

eeli(ix,iy) :energy loss per ionization [Joules]

13. Model for Impurity Radiation and Transport

13.1. Fixed-fraction model

The impurity radiation for the �xed-fraction model uses a look-up table based on non-equilibrium

coronal results from the MIST code (by R. Hulse and D. Post) for a given impurity. The impurity

emissivity depends on electron temperature, charge-exchange recombination on neutral hydrogen

and impurity lifetime due to convection. The impurity charge-exchange rate is evaluated using the

neutral hydrogen density calculated by UEDGE, whereas the impurity lifetime is presently speci�ed

by the user in the 2-D array atau(ix,iy) [sec]. The impurity density is determined as a fraction of

ne(ix,iy) by the user-speci�ed array afrac(ix,iy), i.e., the impurity density = ne*afrac.

The impurity radiation is removed from the electron energy equation by setting the switch

isimpon > 0. [For isimpon=1, you must explicitly read a set of impurity radiation data �les with

the command read setup.nitrogen; this option is now obsolete]. For isimpon=2, impurity radiation

data �les are automatically read when the code is executed with the exmain command; in this case

the code looks for a �le in your working directory with the default name mist.dat.
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One typically speci�es a constant fraction of impurities by typing afrac(,)=0.01 for 1%; the

impurity lifetime atau(,) is defaulted to 1 second, so it does not a�ect the calculation signi�cantly

unless the user sets a lower value. We are working to improve the impurity model so that the

fraction and lifetime are calculated self-consistently from transport.

13.2. Multi-species models

One can also treat the impurities by following the densities of the individual charge states.

This is done by setting isimpon=5 where the FMOMBAL package by Steve Hirshman, ORNL,

is used to calculate the friction forces between species and a mass-averaged momentum equation

is solved for all the species. Another option is to set isimpon=6 where the friction forces are

determined from analytic formulae and the individual impurity parallel velocities come from the

force balance equation that results when impurity inertia and viscosity are ignored. It is possible

to solve individual parallel momentum equations for each charge state. This requires setting the

parameter nusp imp to the number of impurity momentum equations. The radial transport of the

impurity species is determined by the di�usion coe�cients, difni, which may be set di�erently for

each charge state followed (see the section on anomalous transport).

The look-up tables for impurity ionization, radiation, and recombination rates come from a

computer code developed by B. Braams which writes out tables for either ADPAK rates [33] or

STRAHL rates [34]. Which rates are used are controlled by the character variable mc�lename; its

use is illustrated in the multiple-isotope example shown below.

Multiple isotopes can be followed simultaneously. Here the impurity gas is modeled using an

di�usion equation. The relevant parameters for a typical input �le with helium and neon are as

follows (this cases assumes the �rst two \ion" species are hydrogen ions and hydrogen neutrals

using the inertial neutral model; the impurities thus start with ion species 3, but gas species 2):

# Impurities

isimpon =6 #Use force balance equation

# Impurity gas

ngsp = 3 #total number of gas species (hydrogen+ impurities)

isngon(2:3) = 1 #turn on impurity gas equations

recycp(2:3) = 1.0 #plate recycling coe� of helium and neon
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# Helium species

nzsp(1) = 2 #number of helium charge states used

minu(3:4) = 4. #helium mass in AMU

ziin(3:4) = iota(1:2) #charge for each state used

znuclin(3:4) = 2 #nuclear charge for helium

isnicore(4)= 1 # =1 for �xed core density of He++

ncore(4)=2.e18 #density of He++ at core boundary

# Neon species

nzsp(2) = 8 #number of neon charge states used

minu(5:12) = 20. #neon mass in AMU

ziin(5:12) = iota(1:8)#charge for each state used

znuclin(5:12) = 10 #nuclear charge

isnicore(12)= 1 # =1 for �xed core density of Ne+8

ncore(12)=4.e17 #density of Ne+8 at core boundary

# Specify impurity data �les

nzdf = 2 #number of impurity data �les to be read

mc�lename = [\He rates.strahl",\Ne rates.strahl"] #data �le names

14. Specifying Anomalous Radial Transport Coe�cients

The simplest description of radial transport is a set of spatially constant di�usion coe�cients

for density, parallel momentum, electron energy, and ion energy. All are in units of m**2/s, and the

density and momentum coe�cients allow 12 (expandable) locations for 12 species. The coe�cients

are as follows:

difni(i) # radial (or y-direction) density di�usion

vcony(i) # radial convective pinch velocity

difni2(i) # perpendicular density di�usion in \2" direction in

# 
ux surface (perp. to y and || directions)

travis(i) # radial parallel momentum di�usion

difutm(i) # radial toroidal momentum di�usion (for potential eqn)
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kye # radial electron energy di�usion

kyi # radial ion energy di�usion

In addition, one can introduce user-speci�ed, spatially-dependent di�usion coe�cients, or let

the code calculate Bohm-like di�usion coe�cient which are added to the ones above. The switch

isbohmcalc determines which of these two options is active:

isbohmcalc = 1 ! code �lls 2-D arrays dif use, tra use, kye use, and kyi use = Te/(16eB)

(default=1) (these Bohm rates are calc. on x,y-mesh-faces)

isbohmcalc = 0 ! code uses whatever user initially sets for arrays dif use, dif2 use,

tra use, kye use, and kyi use. In addition, vy use may be

set to a user-speci�ed array as the pinch velocity.

The net di�usion is de�ned by using scale factors of the density, electron energy, and ion energy

separately. The net di�usion coe�cients for the isbohmcalc=1 case are thus

difni ! difni + facbni *dif use(ix,iy)

difni2 ! difni2 + facbni2*dif2 use(ix,iy)

travis ! travis + facbup*tra use(ix,iy)

kye ! kye + facbee *kye use(ix,iy)

kyi ! kyi + facbei *kyi use(ix,iy)

vy ! vy + vy use(ix,iy) Only if isbohmcalc=0

Nearly the same relation holds for isbohmcalc=0, except that all of the \facb..." factors are

unity. Note that difni2 and dif2 use typically add small contributions to the poloidal transport that

is dominated by the projection of the parallel transport; we thus usually leavedifni2 = facbni2 =

dif2 use = 0. Here facbni, etc. are only scalars, thus applying equally to all ion species. If one

wishes to use only user-speci�ed di�usion coe�cients, be sure to set difni, difni2, kye, and kyi to zero

as all but difni2 are defaulted to unity if they are not set in the input �le. Also, if the mesh size

changes and the user is specifying the values of dif use, etc. (isbohmcalc=0, facbni=1.), the arrays

dif use, etc. must be re�lled after an allocate for the new mesh size is done.
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15. Converting solutions from Full-Space to Half-Space & Vice Versa

It is convenient to use the ability of BASIS to manipulate arrays to convert a full-space solution

to a half-space solution. Here we show how to do this for a single-null solution and for a lower

double-null solution. Below this is a BASIS script that does the reverse, i.e., takes a half-space

solution and symmetrizes it as the initial guess of a full-space solution. Here a full-space problem is

one with two divertor plates, one at each end of the x (poloidal) domain, and a half-space problem

is one where on end of the x domain is a symmetry plane. Generally, the symmetry plane is at the

left boundary (is�xlb=2), but can also be at the right boundary (is�xrb=2).

15.1. Converting from full-space to half-space

Note that such conversions take place most straightforwardly if one uses �xed temperature core

boundary conditions as the input power does not then need to be adjusted. If you are running with

power boundary conditions (i
core=1), �rst determine the core temperatures, set tcoree and tcorei

to these and change to i
core=0, and then do the conversion to a di�erent sized space.

First, the bottom double-null case:

(Lines beginning with # are comments and may be omitted. Also, the letter variables are

chameleon variables in BASIS that take on the properties of the variable to which they are set)

# save original solution in temporary storage:

$n=nis;$u=ups;$e=tes;$i=tis;$g=ngs;$p=phis

# set switches to do outer quadrant only:

is�xlb=2

# for a single-null case, set

nxomit=nxleg(1,1)+nxcore(1,1)

# or, for a lower double-null case, set

nxomit=nxleg(1,1)+nxcore(1,1)+1
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# get very crude index-interpolated solution for outer quadrant only # NOTE: do not try to

converge from this state: real oldftol=ftol; ftol=1e10; exmain; ftol=oldftol # copy original solution

to restart arrays:

nis=$n(nxomit:nxm+1,,)

ups=$u(nxomit:nxm+1,,)

tes=$e(nxomit:nxm+1,)

tis=$i(nxomit:nxm+1,)

ngs=$g(nxomit:nxm+1,,)

phis=$p(nxomit:nxm+1,)

For a single-null case:

Same as above, but also set the left-hand symmetry boundary conditions:

nis(nxomit,,) = nis(nxomit+1,,)

ups(nxomit,,) = 0.

tes(nxomit,) = tes(nxomit+1,)

tis(nxomit,) = tis(nxomit+1,)

ngs(nxomit,,) = ngs(nxomit+1,,)

phis(nxomit,) = phis(nxomit+1,)

exmain # outer-quadrant-only solution, on original mesh; should converge easily

read doublep # script to double nxleg, nxcore, nycore, nysol

exmain # run and hopefully converge on doubled poloidal mesh

15.2. Converting from a half-space to a full-space

Assumes that nxleg(1,1)=nxleg(1,2) and nxcore(1,1)=nxcore(1,2). Unlike the previous example,

this does not use chameleon variables, but could

Set up needed \ss" work arrays:

real8 niss(0:2*nx+1,0:ny+1,1:nisp); real8 upss(0:2*nx+1,0:ny+1,1:nusp)

real8 tess(0:2*nx+1,0:ny+1); real8 tiss(0:2*nx+1,0:ny+1)
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real8 ngss(0:2*nx+1,0:ny+1,1:ngsp); real8 phiss(0:2*nx+1,0:ny+1)

Fill work arrays:

do ix = 0, nx

niss(ix,,1:nisp) = nis(nx+1-ix,,1:nisp)

upss(ix,,1:nusp) = -ups(nx-ix,,1:nusp)

tess(ix,) = tes(nx+1-ix,)

tiss(ix,) = tis(nx+1-ix,)

ngss(ix,,1:ngsp) = ngs(nx+1-ix,,1:ngsp)

phiss(ix,) = phis(nx+1-ix,)

enddo

do ix = nx+1, 2*nx+1

niss(ix,,1:nisp) = nis(ix-nx,,1:nisp)

upss(ix,,1:nusp) = ups(ix-nx,,1:nusp)

tess(ix,) = tes(ix-nx,)

tiss(ix,) = tis(ix-nx,)

ngss(ix,,1:ngsp) = ngs(ix-nx,,1:ngsp)

phiss(ix,) = phis(ix-nx,)

enddo

Modify switches, allocate proper space for save variables and �ll them.

nxomit = 0

is�xlb = 0

allocate

nis = niss

ups = upss

tes = tess

tis = tiss

ngs = ngss

phis = phiss

At this point, you may begin the run with an exmain command, or save the \s" variables for a
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restart by creating a PFB save-�le, e.g.,

create pf somename;write nis,ups,tes,tis,ngs,phis;close
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Appendix A. Equations used for the UEDGE code

This section closely parallels the discussion in Ref. 25, and the interested reader may �nd it

helpful to consult that paper for some more details. The basic form of the transport equations,

without cross-�eld drifts, corresponds to that implemented in a number of edge transport codes

being based on classical 
uid equations, one of the �rst being the B2 [3] code as later speci�ed

in the published Ref. 4. Here we show the modi�cations to this equation set as used in UEDGE

when classical cross-�eld drifts are included. The plasma velocities in our equations are denoted

by the symbol u and di�er from the total velocities v by having the classical cross-�eld pressure or

temperature gradient terms omitted since these have zero divergence, or cancel with gyro-viscous

terms, and therefore do not contribute to the transport. (e.g., see Ref. 2. Note that vk = uk. For

the poloidal ion velocity

uix =
Bx

B
vik + vx;E + vix;rB; (A1)

where the x-component of vi;rB can be found in Ref. 25. For the radial ion velocity

uiy = �
Da

ni

@ni
@y

+ vy;E + viy;vis + viy;rB ; (A2)

where the last two terms come from the corrections to vi;y1 given in Ref. 25.

The electron velocities are obtained from

ue =
niZiui
ne

�
(Jk + Jvis + JrB)

ene
(A3)

where again the J's are only the currents with �nite divergence.

The ion continuity equation is
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The terms h�rvei and h�ivei are rate coe�cients for recombination and ionization, respectively.

The metric coe�cients are hx � 1=jjrxjj, hy � 1=jjryjj, and V = 2�Rhxhy is the volume element

for toroidal geometry with major radius R. [4] For brevity of presentation, the metric coe�cients

are suppressed in the remaining equations.

The ion parallel momentum equation is
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where Pp = Pe + Pi, �ix = (Bx=B)
2�k is the classical viscosity, �iy = min�ak is anomalous. All

classical viscosities and thermal conductivities are 
ux-limited to prevent unphysically large values

in regions with long mean-free paths. Expressions for the classical terms can be obtained from

Ref. 1.

The electron energy equation is
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(A6)

Here the poloidal heat conductivity is classical, �ex = (Bx=B)
2�k, radial is anomalous, �ey = n�e,

and Kq is the collisional energy exchange coe�cient.

The ion energy equation is
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As for the electrons, the poloidal thermal conduction (and viscosity) coe�cients are classical and

the radial are anomalous.

The equation for the potential is obtained by subtracting the ion and electron continuity equa-

tions, and assuming quasineutrality, ni = ne:

r � J(�) =
@

@x
(Jx) +

@

@y
(Jy) = 0 (A8)

Here by J we mean the currents excluding the magnetization current since the divergence of the

latter is automatically zero owing to it being the curl of a vector. The remaining current components

are

J =

�
ne(vi;rB � ve;rB) � îx + Jk

Bx

B

�
îx + ne(vi;y1 � ve;y1 )̂iy : (A9)

Note that the terms arising from the vrB-drift do not explicitly depend on �, so they act as source

terms in Eq. (A8). The expression for the parallel current, Jk, comes from the parallel momentum

equation for electrons with me ! 0, yielding,

Jk =
en

0:51me�e
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@x
+ 0:71
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�
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Here �e is the electron collision frequency, and the numerical coe�cients are described in Ref. 1.

Note that the expression for the radial current is di�erent from that in Ref. 4.
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The simplest neutral gas model (with nhsp=1 and isupgon=0) considers a di�usive model for

the gas transport owing to charge-exchange collisions. In this case, one has the gas velocity given

by

vg = �
r(ngTn)

ming(nih�cxvii+ neh�ivei)
: (A11)

More generally, we use a full momentum equation to describe the parallel neutral velocity together

with a di�usive model for the motion perpendicular to the magnetic �eld; this model is described

in Refs. 14{16,18.

The neutral gas density, ng, is determined by solving the continuity equation

@

@t
ng +

@

@x
(ngvnx) +

@

@y
(ngvny) = (h�rvei � h�ivei)neng: (A12)
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